Centrifugal Compressor |
Air compressors of various designs are used widely throughout DOE facilities in numerous applications. Compressed air has numerous uses throughout a facility including the operation of equipment and portable tools. Three types of designs include reciprocating, rotary, and centrifugal air compressors. Centrifugal Compressors The centrifugal compressor, originally built to handle only large volumes of lowpressure gas and air (maximum of 40 psig), has been developed to enable it to move large volumes of gas with discharge pressures up to 3,500 psig. However,centrifugal compressors are now most frequently used for medium volume and medium pressure air delivery. One advantage of a centrifugal pump is the smooth discharge of the compressed air. The centrifugal force utilized by the centrifugal compressor is the same force utilized by the centrifugal pump. The air particles enter the eye of the impeller, designated D in Figure 6. As the impeller rotates, air is thrown against the casing of the compressor. The air becomes compressed as more and more air is thrown out to the casing by the impeller blades. The air is pushed along the path designated A, B, and C in Figure 6. The pressure of the air is increased as it is pushed along this path. Note in Figure 6 that the impeller blades curve forward, which is opposite to the backward curve used in typical centrifugal liquid pumps. Centrifugal compressors can use a variety of blade orientation including both forward and backward curves as well as other designs. There may be several stages to a centrifugal air compressor, as in the centrifugal pump, and the result would be the same; a higher pressure would be produced. The air compressor is used to create compressed or high pressure air for a variety of uses. Some of its uses are pneumatic control devices, pneumatic sensors, pneumatic valve operators, pneumatic motors, and starting air for diesel engines. |
Reciprocating Compressors |
Air compressors of various designs are used widely throughout DOE facilities in numerous applications. Compressed air has numerous uses throughout a facility including the operation of equipment and portable tools. Three types of designs include reciprocating, rotary, and centrifugal air compressors. *Reciprocating Compressors The reciprocating air compressor, illustrated in Figure 1, is the most common design employed today. The reciprocating compressor normally consists of the following elements. a. The compressing element, consisting of air cylinders, heads and pistons, and air inlet and discharge valves. b. A system of connecting rods, piston rods, crossheads, and a crankshaft and flywheel for transmitting the power developed by the driving unit to the air cylinder piston. c. A self-contained lubricating system for bearings, gears, and cylinder walls, including a reservoir or sump for the lubricating oil, and a pump, or other means of delivering oil to the various parts. On some compressors a separate force-fed lubricator is installed to supply oil to the compressor cylinders. d. A regulation or control system designed to maintain the pressure in the discharge line and air receiver (storage tank) within a predetermined range of pressure. e. An unloading system, which operates in conjunction with the regulator, to reduce or eliminate the load put on the prime mover when starting the unit. A section of a typical reciprocating single-stage, single-acting compressor cylinder is shown in Figure 2. Inlet and discharge valves are located in the clearance space and connected through ports in the cylinder head to the inlet and discharge connections. During the suction stroke the compressor piston starts its downward stroke and the air under pressure in the clearance space rapidly expands until the pressure falls below that on the opposite side of the inlet valve (Figures 2B and 2C). This difference in pressure causes the inlet valve to open into the cylinder until the piston reaches the bottom of its stroke (Figure 2C). During the compression stroke the piston starts upward, compression begins, and at point D has reached the same pressure as the compressor intake. The spring-loaded inlet valve then closes. As the piston continues upward, air is compressed until the pressure in the cylinder becomes great enough to open the discharge valve against the pressure of the valve springs and the pressure of the discharge line (Figure 2E). From this point, to the end of the stroke (Figures 2E and 2A), the air compressed within the cylinder is discharged at practically constant pressure. |
Established back in 1973, Cooper Freer have been supplying customers with air compressor units for more than 43 years in Leicester, Peterborough, Corby, Northampton. Our deep knowledge about the products help you find the right systems for your applications.
ReplyDeleteShare great information about your blog , Blog really helpful for us . We read your blog , share most useful information in blog . Thanks for share your blog here .เครื่องอัดอากาศ
ReplyDeleteIt is a very informative and useful post thanks it is good material to read this post increases my knowledge. Small Business Coach
ReplyDeletecompressor rotor is good idea for increases knowledge i like your post very much
ReplyDeleteThis is such a great resource that you are providing and you give it away for free. I love seeing blog that understand the value of providing a quality resource for free.
ReplyDeletegas compressor
Really, you have made me think about something that can change the industry based on compressors and its tools having ASTM A276 Stainless Steel 253 MA Square Bars
ReplyDeleteThis comment has been removed by the author.
ReplyDeleteThis is an amazing post. Thanks for sharing.
ReplyDeletedry vacuum pump
roots vacuum pump
rotary vane pump